
Interactive Search with Mixed Attributes
Weicheng Wang*, Raymond Chi-Wing Wong*, Min Xie+

Hong Kong University of Science and Technology*, Shenzhen Institute of Computing Sciences, Shenzhen University+

wwangby@connect.ust.hk, raywong@cse.ust.hk, xiemin@sics.ac.cn

Abstract—The problem of extracting the user’s favorite tuple
from a large dataset attracts a lot of attention in the database
community. Existing studies attempt to search for the target tuple
with the help of user interaction. Specifically, they ask a user
several questions, each of which consists of two tuples and asks
the user to indicate which one s/he prefers. Based on the feedback,
the user preference is learned implicitly and the target tuple w.r.t.
the learned preference is returned. However, they mainly consider
datasets with numerical attributes (e.g., price). In practice,
tuples can also be described by categorical attributes (e.g., color),
where there is no trivial order in the attribute values. Even if the
categorical attributes can be reduced into numerical ones using
conventional strategies (e.g., one-hot encoding), existing methods
do not work well. In this paper, we study how to find the user’s
favorite tuple from datasets with mixed attributes (including both
numerical and categorical attributes) by interacting with the user.

We study our problem progressively. Firstly, we inquiry a
special case in which tuples are only described by categorical
attributes. We present algorithm SP-Tree that asks an asymp-
totically optimal number of questions. Secondly, we explore the
general case in which tuples are described by numerical and cate-
gorical attributes. We propose algorithm GE-Graph that performs
well theoretically and empirically. Experiments are conducted on
synthetic and real datasets. The results show that our algorithms
outperform existing ones on both the execution time and the num-
ber of questions asked. Under typical settings, we reduce dozens
of questions asked and speed up by several orders of magnitude.

Index Terms—user interaction; categorical attribute

I. INTRODUCTION

A dataset usually consists of millions of tuples described
by several attributes. The attributes can be classified into two
types, “numerical” attributes and “categorical” attributes [1],
[2], based on whether there exist fixed orders on their attribute
values. For example, Table I shows a used car dataset. Each
car is described by four attributes, namely brand, color, price,
and horsepower. The price and horsepower are numerical
attributes since there come with fixed orders on their attribute
values. Users always desire a cheap car equipped with as much
horsepower as possible. In comparison, the brand and color are
categorical attributes since they do not refer to any fixed orders
for all users, i.e., different users have various preferences on
the car brands or colors. For instance, one user may prefer
Mercedes while another user might be inclined to BMW.

Suppose that a user wants a used car. The user has a trade-
off between price and brand and is willing to pay more for a
famous brand than an obscure one. To model the preference,
a commonly-used strategy is to utilize numerical weights in a
linear utility function [3]–[7]. Precisely, it quantifies the user
preference, and characterizes a vector comprising one weight
per attribute. Based on the linear utility function, each tuple is

Table I: A Used Car Dataset

Car ID Brand Color Price Horsepower
1 Mercedes White 2000 300
2 BMW White 3000 270
3 Mercedes Black 4500 150
4 BMW Black 5000 60

associated with a utility (i.e., a function score). It indicates to
what extent the user prefers the tuple, where a higher utility
means that the tuple is more favored by him/her and the tuple
with the highest utility is assumed to be the favorite tuple.

Based on the scheme, there are a lot of interactive operators
proposed to assist users in finding their favorite tuples. Such
operators, regarded as multi-criteria decision-making tool, can
be applied in various domains, including purchasing a used
car, buying a house, and finding a place for a trip. Specifically,
they interact with a user and learn the information of the user
preference (i.e., the utility function) implicitly from the user
feedback. Then, they return the tuple with the highest utility
based on the obtained information. However, the existing
operators are mainly designed for the datasets with numerical
attributes (e.g., price). In the scenario of purchasing a used car
(which is also applied in our user study in Section VI-C), The
user’s trade-off involves numerical and categorical attributes.
The existing operators have difficulties in handling both types
of attributes well to recommend the user a satisfactory car.

Motivated by the needs of handling both types of attributes,
we propose problem Interactive Search with Mixed Attributes
(ISM), which interacts with a user to find the user’s favorite
tuple from the dataset described by mixed attributes (including
both numerical attributes and categorical attributes) with as
few questions asked as possible. Our interactive framework
mainly follows [6]–[8], where each question is in the form of
a pairwise comparison. It presents two tuples that are selected
based on the user’s answers to previous questions, and asks
the user to indicate which one s/he prefers. After collecting
the user’s choice, we learn the user preference implicitly and
return the best tuple w.r.t. the learned preference.

The interactive framework has two characteristics worth
noting. Firstly, it is based on an assumption proposed by
[9] that users can tell which tuple they prefer the most from
a set of tuples. This assumption has been studied by many
existing works [6], [7]. In Section VI-C, we also studied this
assumption by considering the cases in which users may not
be able to answer some questions, and may make mistakes
during the interaction. Besides, we conducted a user study to
evaluate our proposed algorithm in real scenarios. Secondly,
the questions asked to a user are in the form of pairwise

comparisons. In cognitive psychology, the Thurstone’s Law of
Comparative Judgement indicates that the pairwise comparison
is the most effective way to learn the user preference [8],
[10]. The user studies in [7], [8] also verified that pairwise
comparisons could effectively capture how users assess multi-
attributes tuples. This kind of interaction naturally appears in
our daily life. For example, a seller shows a user a black car
and a white car, and asks which one s/he prefers.

In marketing research [11], [12], it is expected that the
questions asked to a user should be as few as possible.
Otherwise, users may feel bored and answer questions im-
patiently, affecting the interaction results. Thus, our problem
ISM follows the setting of existing studies [6], [7] to return one
tuple instead of multiple tuples (e.g., k tuples), since the latter
case requires asking much more questions. Intuitively, the
former case only needs to learn the user preference between
one tuple and the rest of tuples, while the latter case requires
to learn the user preference between k tuples and the rest of
tuples. Experiments in [7] verify that the latter case asks 4-10
times more questions than the former case. Its user study also
shows that users are willing to answer fewer questions even if
fewer tuples are returned. Therefore, we reduce the number of
questions asked by just returning one tuple, which is sufficient
in many applications, e.g., investing financial products, renting
apartments, and purchasing used cars, to strike a balance
between the user effort and the result size. For example, a
user plans to rent an apartment for several months. Since s/he
will only live in one apartment for a short time, it suffices to
return the best candidate. The user might be frustrated due to
the long selection process even if finally, several candidates are
returned. Note that our proposed algorithms can be extended
to returning multiple tuples. The extension is shown in [13].

To the best of our knowledge, we are the first to study
problem ISM. There are closely related studies, e.g., [6], [8],
[14]. But they are different from ours by mainly considering
numerical attributes, while we focus on both numerical and
categorical attributes. In this sense, existing studies can be
seen as our special case. Note that [6], [8], [14] can be adapted
to solve problem ISM by transforming categorical attributes
to numerical ones using conventional strategies (e.g., one-
hot encoding) [8]. However, none of them work satisfactorily,
i.e., as shown empirically, they asked many questions and ran
slowly. For example, on the dataset with two categorical and
four numerical attributes, they either ask hundreds of questions
or execute in thousands of seconds. The main reason behind
this is that categorical attributes are discrete and unordered
while numerical attributes are continuous and ordered. Even
if we transform categorical attributes, the generated attributes
cannot get rid of the categorical nature. Their values are still
discrete (e.g., 0 or 1) rather than continuous. Thus, the existing
strategies designed for numerical attributes cannot be applied
efficiently and effectively to categorical attributes.

Contributions. Our contributions are summarized as follows.

• To the best of our knowledge, we are the first to propose
the problem of finding the user’s favorite tuple from the

dataset with mixed attributes, including both numerical and
categorical attributes, by interacting with the user.

• We show a lower bound on the number of questions asked
which is needed for finding the user’s favorite tuple.

• We propose algorithm SP-Tree, for a special case of ISM
in which tuples are only described by categorical attributes,
which asks an asymptotically optimal number of questions.

• We propose algorithm GE-Graph performing well theoreti-
cally and empirically for the general case of ISM in which
tuples are described by numerical and categorical attributes.

• We conducted experiments to demonstrate the superiority of
our algorithms. Under typical settings, the best-known ex-
isting algorithm asked 36.1 questions in 239 seconds, which
is quite troublesome. Our algorithm asked 25.9 questions in
2.2 seconds. It reduced the number of questions asked by
more than 28% and accelerated by two orders of magnitude.
In the following, we discuss the related work in Section II.

Section III shows the formal definition of problem ISM. In
Section IV, we propose algorithm SP-Tree for the special case
of ISM. In Section V, we present algorithm GE-Graph for
the general case of ISM. Extensive experiments are shown in
Section VI. Finally, Section VII concludes our paper.

II. RELATED WORK

There are many queries attempting to learn the user pref-
erence by interacting with a user. [9] proposed the interactive
regret minimizing query. It defined a criterion called the regret
ratio (which evaluates how regretful a user is when they see
the returned tuples instead of the whole dataset), and targeted
to return a small size of output while minimizing the regret
ratio. However, [9] displayed fake tuples, which are artificially
constructed (not selected from the dataset), in each question
when interacting with a user. This artificial construction might
produce unrealistic tuples (e.g., a car with 10USD and 60000
horsepower) and users may be disappointed if the displayed
tuples with which they are satisfied do not exist. Besides, it is
impractical for users to truly evaluate fakes tuples [6], resulting
in the difficulty of applying the algorithm of [9] into real-
world applications. Based on these defects, [6] proposed the
strongly truthful interactive regret minimization that utilizes
real tuples (selected from the dataset). Unfortunately, [6], [9]
only considered datasets described by numerical attributes.
There exist obstacles to applying them to many scenarios that
involve both numerical attributes and categorical attributes.

[8] proposed algorithm Adaptive that approximated the
user preference by interacting with users. Since it focused on
learning the user preference instead of recommending tuples,
it might ask many redundant questions in which our problem
ISM is not interested. For example, if a user prefers car p1 to
both cars p2 and p3, the user preference between p2 and p3 is
less interesting in our problem, but this additional information
may be useful in [8]. [8] proposed to transform categorical
attributes to numerical attributes by using the standard SVM
convention. In this way, the existing algorithms designed for
numerical attributes can be adapted to working on the datasets
with both categorical and numerical attributes. However, as

2

shown in Section VI, adapted algorithms from [6], [8], [14]
performed poorly. They asked dozens more questions and took
orders of magnitude longer time than ours. As remarked in
Section I, this is because the categorical nature is unchanged
even with transformation. Thus, the optimization strategies for
continuous numerical attributes are not effective for discrete
categorical attributes. [15] studied to find the user’s favorite
tuple by interacting with a user on the dataset with ordered
and unordered attributes. However, the ordered and unordered
attribute values are numbers (e.g., the number of seats in a car).
Thus, they rely on the continuous property of attributes and are
difficult to be applied to the datasets with categorical attributes.

In the machine learning (ML) area, our problem is related
to the learning to rank problem [14], [16]–[19], which learns
the ranking of tuples by pairwise comparisons. However,
most existing algorithms [16]–[19] failed to utilize the inter-
relation between tuples. For example, the attribute “price” is
an interrelation between cars. Given a $3000 car p and a
$5000 car q that have the same values in other attributes,
p is generally considered to be better than q because of the
lower price. The existing algorithms neglected this relation
and directly asked a question to learn the priority of p and
q instead. Thus, they required asking many questions that are
unnecessary in our problem ISM. [14] considered the inter-
relation between tuples to learn the ranking. However, it was
only based on the numerical attributes. Besides, [14], [17], [19]
focused on deriving the full ranking of tuples, which needs to
ask excessive questions that are not concerned by our problem
ISM due to the similar reason stated for [8].

Our work is to return the user’s favorite tuple from the
dataset described by both numerical and categorical attributes
by interacting with the user via real tuples. Compared with
the existing studies, we have the following advantages. (1) We
use real tuples during the interaction (unlike [9] that utilizes
fake tuples). (2) We consider both numerical attributes and
categorical attributes. The existing studies [6], [9], [14] only
handle numerical attributes. They can be seen as a special
case of our work when the categorical attributes are excluded
from consideration. (3) We only involve a few easy questions.
Firstly, existing studies like [8], [14], [16]–[18] ask a lot of
questions since they either require learning a full ranking of
tuples or aim at learning an exact user preference. Secondly,
[16]–[18] fail to utilize the inter-relation between tuples, and
thus, involve a lot of unnecessary interaction.

III. PROBLEM DEFINITION

The input to our problem is a set D of n tuples. Each tuple
p = (pcat[1], pcat[2], ..., pcat[dcat], pnum[1], ..., pnum[dnum])
is described by d mixed attributes, including dcat categorical
attributes and dnum numerical attributes (d = dcat + dnum).
For convenience, let pnum = (pnum[1], ..., pnum[dnum]) and
pcat = (pcat[1], ..., pcat[dcat]). We denote the number of pos-
sible values (i.e., cardinality) in the i-th categorical attribute
by si for each i ∈ [1, dcat].
Example 1. Consider Table III(a). Each tuple p has two
categorical attributes and two numerical attributes. Thus,

Table II: Summary of Frequently Used Notations

Notations Definition
D and p, q The dataset and tuples.
dcat / dnum The number of categorical/numerical attributes.

pcat[i] / pnum[j]
The value of p in the i-th categorical attribute (i ∈
[1, dcat])/j-th numerical attribute (j ∈ [1, dnum]).

ucat[i] / unum[j]
The importance of the i-th categorical attribute/j-th
numerical attribute to the user.

gi(·) gi(pcat[i]) = ucat[i]h(pcat[i]) (i ∈ [1, dcat]).
Si
p The set {pcat[i], pcat[i+ 1], ..., pcat[dcat]}.

h+
z / h−

z The half-space above/below hyper-plane hz .

R / G / C The numerical utility range. / The relation graph. /
The candidate set.

dcat = dnum = 2. Since each categorical attribute has 2
possible values (i.e., the first one has A1 and A2, and the
second one has B1 and B2), we have s1 = s2 = 2.

Following the existing setting [6]–[8], [20], we model the
user preference as a linear utility function. The linear utility
function becomes the most proliferate and effective represen-
tation since the inception of utility modeling [3], [4]. The
user studies conducted by [7], [8] also verify that the linear
utility function can effectively capture how real users evaluate
tuples. Formally, a linear utility function f is defined to be
f(p) =

∑dcat

i=1 ucat[i]h(pcat[i]) +
∑dnum

j=1 unum[j]pnum[j].

• Function h : pcat[i] → R+ maps each categorical value to
a real number which indicates to what extent a user favors
a categorical value. A larger number is more preferred.

• Element ucat[i] (resp. unum[j]) measures the importance of
the i-th categorical (resp. the j-th numerical) attribute to the
user. For the ease of representation, we denote the elements
by two vectors in utility function f : the categorical utility
vector ucat = (ucat[1], ..., ucat[dcat]) and the numerical
utility vector unum = (unum[1], ..., unum[dnum]). Without
loss of generality, following [6], [21], we assume that∑dnum

j=1 unum[j] = 1 and call the domain of unum the
numerical utility space. Note that ucat and unum are
correlated. If we assume that the sum of elements of unum

is equal to 1, we cannot make the same assumption for ucat.
There are other ways to normalize the utility vectors, e.g.,∑dcat

i=1 ucat[i]+
∑dnum

i=j unum[j] = 1. Our method considers
that pnum is fixed while function h varies for different users.

• Function value f(p), called the utility of p w.r.t. f , represents
how much a user favors tuple p. The tuple that has the high-
est utility is the user’s favorite tuple. By definition, rescaling
the numerical attributes does not change the ranking of
tuples w.r.t. the utility function (i.e., scale invariant [5],
[6]). Thus, we assume w.l.o.g. that each numerical attribute
is normalized to (0, 1] and a larger value is more favored.

In the above formulation, each term in f related to the
categorical attributes appear in the form of ucat[i]h(pcat[i]),
where i ∈ [1, dcat]. Both ucat[i] and h(pcat[i]) are unknown
at the beginning (i.e., we have two unknown variables). Since
knowing either one of them does not suffice to determine the
user’s favorite tuple, we directly study their co-influencing
effect without considering the interplay between ucat[i] and
h(pcat[i]). Specifically, we use a single function gi to denote

3

Table III: Dataset, Utilities and Function g

p pcat[1] pcat[2] pnum[1] pnum[2] f(p) gi(·)
p1 A1 B1 0.4 1 1.30 g1(A1) = 0.2
p2 A2 B1 0.6 0.9 1.45 g1(A2) = 0.3
p3 A1 B2 0.9 0.5 1.40 g2(B1) = 0.4
p4 A2 B2 1 0.2 1.40 g2(B2) = 0.5

(a) Dataset and Utilities (b) gi(·)

𝑅𝑜𝑜𝑡

𝐵! 𝐵"𝐵"𝐵!

𝐴! 𝐴"

𝑝! 𝑝# 𝑝" 𝑝$

Figure 1: C-Tree

𝑅𝑜𝑜𝑡

𝐵!𝐵!

𝐴! 𝐴"

𝑝! 𝑝"

Figure 2: Pruned C-Tree

both ucat[i] and h(pcat[i]) (i.e., we use a single unknown
variable) such that function gi : pcat[i] → R+ is defined to
be: gi(pcat[i]) = ucat[i]h(pcat[i]) and i ∈ [1, dcat]. In this
way, we focus on learning gi(pcat[i]) instead of ucat[i] and
h(pcat[i]). This will help to reduce the number of questions
asked to a user since we intend to learn one variable rather
than two. The frequently used notations are shown in Table II.
Example 2. Continue Example 1. Let unum = (0.5, 0.5).
The utility function f for a tuple p is expressed as f(p) =
g1(pcat[1]) + g2(pcat[2]) + 0.5 × pnum[1] + 0.5 × pnum[2].
Suppose that function g has its values over different categorical
values (i.e., A1, A2, B1, and B2) as shown in Table III(b).
Since g1(A2) = 0.3 and g2(B1) = 0.4, the utility of p2 w.r.t. f
is f(p2) = 0.3+0.4+0.5×0.6+0.5×0.9 = 1.45. The utilities
of the other tuples can be computed similarly. Tuple p2 is the
user’s favorite tuple, since it has the highest utility w.r.t. f .

Our interactive framework follows [6]–[9] and works on the
dataset with mixed attributes. Specifically, we interact with a
user for rounds until we find the user’s favorite tuple. Each
round consists of three components. (1) Tuple selection. Based
on the user’s previous answers, we select two tuples and ask
the user to pick the one s/he prefers. Each tuple is a combina-
tion of categorical and numerical values. For example, a user
might be presented with two cars: <Mercedes, White, $2000,
300> and <BMW, Black, $5000, 60>, where the last value
in the combination represents the horsepower. (2) Information
maintenance. According to the user’s choice, we update the
information maintained for learning the user preference. (3)
Stopping condition. We check whether the stopping condition
is satisfied. If so, we terminate the interaction process and
return the result. Otherwise, we start a new interactive round.
Formally, we are interested in the following problem. For the
lack of space, the complete proofs of some theorems/lemmas
can be found in [13].
Problem 1. (Interactive Search with Mixed Attributes
(Problem ISM)) Given a tuple set D described by mixed
attributes, we want to ask a user as few questions as possible
to determine the user’s favorite tuple in D.
Theorem 1. There exists a dataset of n tuples such that any al-
gorithm needs to ask Ω(s1+

∏dcat

i=2 s2i +log(n−s1−
∏dcat

i=2 s2i))
questions to determine the user’s favorite tuple.

IV. ISM CONSIDERING CATEGORICAL ATTRIBUTES ONLY

In this section, we consider a special case of ISM in which
tuples are only described by categorical attributes. This case
exists in multiple scenarios, e.g., job application, online dating,
and customer service [22]. For example, in the job application

scenario, the candidates may provide their gender, speciality,
and hobbies, which are all categorical attributes.

Intuitively, our algorithm SP-Tree maintains tuples in a tree
data structure, called categorical value tree, or C-Tree in short.
During the interaction, tuples are selected from the C-Tree as
questions to be asked to a user (tuple selection). Based on the
user’s answer, we update the C-Tree by pruning from it the tu-
ples that cannot be the user’s favorite tuple (information main-
tenance). When there is only one tuple left in the C-Tree, we
stop and return the tuple as the answer (stopping condition).

A. Information Maintenance

Since tuples are described by categorical attributes only,
we define a tree data structure C-Tree to maintain tuples
based on the categorical attributes. It has dcat + 2 levels and
satisfies the following properties. (1) The root is in the 0-th
level. (2) Each node in the i-th level stores a categorical
value in the i-th categorical attribute, where i ∈ [1, dcat]. It is
possible that different nodes store the same categorical value.
Note that we allow attributes to be appeared in the C-Tree in
arbitrary orders, e.g., attributes with small cardinalities appear
in low-levels of the C-Tree. (3) Each tuple in the dataset is
recorded in a leaf (i.e., the node in the (dcat + 1)-th level).
There is only one path from the root to the leaf, and the
categorical values of the tuple are stored in the path in order.
Example 3. Figure 1 shows a C-Tree. The nodes in the first-
level store the categorical values in the first attribute (i.e., A1

and A2). The nodes in the second-level store the categorical
values in the second attribute (i.e., B1 and B2). Each tuple
(i.e., p1, p2, p3, and p4) is stored in a leaf, e.g., p1 is stored
in the leftmost leaf. The path from the root to the leftmost
leaf contains the categorical values of p1 (i.e., A1 and B1).

Construction of C-Tree. The C-Tree is constructed progres-
sively. It starts with a root and the tuples in D are inserted into
it one by one. For each tuple p ∈ D, we traverse the C-Tree
once from the root to the bottom. Suppose that the traversal
is at a node N in the (i − 1)-th level, where i ∈ [1, dcat].
We check the children of N . If there is a child of N and its
stored categorical value is equal to pcat[i], we move to this
child. Otherwise, we create a new child for N to store pcat[i]
and move to this new child. The traversal process continues
until we reach a node N ′ in the dcat-th level. Then, we create
a child (i.e., a leaf) for node N ′ to record tuple p.
Example 4. Consider Table III. Assume that the tuples are
only described by categorical attributes. The C-Tree begins
with a root. Let us insert tuple p1 into the C-Tree. Since the
root does not contain any child, we build (1) 2 new nodes in

4

the first and second levels, respectively, which include A1 and
B1 in order, and (2) a leaf that contains p1. The other tuples
can be inserted similarly. The C-Tree is shown in Figure 1.

Update on C-Tree. For the ease of representation, let Si
p

denote the set that contains the values of p from the i-th
categorical attribute to the dcat-th categorical attribute, i.e.,
Si
p = {pcat[i], pcat[i + 1], ..., pcat[dcat]}. For example, in

Table III, S2
p1

= {B1}. Consider two tuples p, q ∈ D which are
the same in the first i−1 categorical attributes, i.e., ∀j ∈ [1, i−
1], pcat[j] = qcat[j]. We present them as a question to a user.

Lemma 1. If a user prefers p to q, then
∑

cj∈Si
p
gj(cj) >∑

cj∈Si
q
gj(cj) (cj is the value in the j-th categorical attribute).

For simplicity, we denote
∑

cj∈Si
p
gj(cj) >

∑
cj∈Si

q
gj(cj)

by Si
p ≻ Si

q in the following. It indicates that the user favors
more the categorical values in Si

p than those in Si
q .

Example 5. In Figure 1, tuples p1 and p3 have the same value
A1 in the first categorical attribute. If a user prefers p1 to p3,
then S2

p1
≻ S2

p3
(where S2

p1
= {B1} and S2

p3
= {B2}).

Based on the learned information (i.e., Si
p ≻ Si

q), we update
the C-Tree by pruning tuples which cannot be the favorite one.

Lemma 2. Suppose that Si
p ≻ Si

q . If tuples p and q are the
same in the first i − 1 categorical attributes, q cannot be the
user’s favorite tuple and thus, it is pruned from the C-Tree.

Intuitively, for the first i − 1 categorical attributes, tuples
p and q have the same values. For the remaining categorical
attributes, since Si

p ≻ Si
q , the user favors more the remaining

values of p than those of q. Thus, the user must prefer p to q.

Example 6. In Figure 1, suppose that S2
p1
≻ S2

p3
. Since

p1 and p3 have the same categorical value A1 in the first
attribute, tuple p3 cannot be the user’s favorite tuple, and thus,
p3 is pruned from the C-Tree. Consider tuples p2 and p4.
Since S2

p2
= S2

p1
and S2

p4
= S2

p3
, we derive S2

p2
≻ S2

p4
(we

will show the derivation rules later). Since p2 and p4 have
the same categorical value A2 in the first attribute, tuple p4
cannot be the user’s favorite tuple, and thus, p4 is also pruned
from the C-Tree. The updated C-Tree is shown in Figure 2.

B. Tuple Selection

We learn the user preference on categorical values from the
bottom to the top of the C-Tree. Concretely, we process the
C-Tree level by level, starting from the dcat-th level. During
the process, we work on the level closest to the root (i.e., the
i-th level with the smallest value of i, where i ∈ [1, dcat])
such that each node in the level can only reach one leaf. For
example, in Figure 2, we work on the first level since it is the
level closest to the root and each node in the first level can
reach only one leaf (i.e., the node that stores categorical value
A1 (resp. A2) can only reach one leaf containing p1 (resp.p2)).

Suppose that we are at the i-th level of of the C-Tree,
where i ∈ [1, dcat]. Let Si = {Si

p | Tuple p is in the C-Tree}.
Note that there might be tuples, e.g., p and q, such that
Si
p = Si

q . We only maintain one set (Si
p or Si

q) in Si. Assume
that Si = {Si

q1 , S
i
q2 , ..., S

i
qmi
}. Our algorithm scans from Si

q2

to Si
qmi

. For each set Si
qj , where j ∈ [2,mi], we consider sets

Si
q1 , S

i
q2 , ..., S

i
qj−1

one by one. Suppose that we are at Si
qk

,
where k ∈ [1, j − 1]. We check if there exist two tuples p
and q in the C-Tree such that (1) p and q are the same in the
first i− 1 attributes, and (2) Si

p = Si
qj and Si

q = Si
qk

. If such
p and q exist, we present p and q as a question to the user.

Example 7. For the second level of the C-Tree in Figure 1,
S2 = {S2

p1
, S2

p3
} (S2

p1
= {B1} and S2

p3
= {B2}). S2

p2
(resp.

S2
p4

) is not stored in S2 since S2
p1

= S2
p2

(resp. S2
p3

= S2
p4

).
Based on our tuple selection strategy, we consider sets S2

p1
and

S2
p3

, and select p1 and p3 as a question asked to the user.

When obtaining an initial relation Si
p ≻ Si

q , we can derive
more relations based on it as follows to update the C-Tree.

Firstly, we ensure the transitivity of user preference on the
categorical values. For instance, if Si

p′ ≻ Si
p and Si

p ≻ Si
q ,

then we obtain a new relation Si
p′ ≻ Si

q . Formally, we define
the following derivation rules based on Si

p ≻ Si
q .

1) If ∃Si
p′ ∈ Si such that Si

p′ ≻ Si
p, then Si

p′ ≻ Si
q .

2) If ∃Si
q′ ∈ Si such that Si

q ≻ Si
q′ , then Si

p ≻ Si
q′ .

Example 8. Suppose that there are three sets Si
q1 = {B1},

Si
q2 = {B2}, and Si

q3 = {B3}. Assume that Si
q1 ≻ Si

q2 (i.e.,
{B1} ≻ {B2}). If we learn that Si

q2 ≻ Si
q3 (i.e., {B2} ≻

{B3}), we can derive Si
q1 ≻ Si

q3 (i.e., {B1} ≻ {B3}).
Secondly, since Si

p and Si
q may have the same values, we

only consider their distinct values to derive new relations.
3) If ∃Si

p′ , Si
q′ ∈ Si such that Si

p′ \ Si
q′ = Si

p \ Si
q and

Si
q′ \ Si

p′ = Si
q \ Si

p, then Si
p′ ≻ Si

q′ .

Example 9. Suppose that there are four sets Si
q1 = {A1, B1},

Si
q2 = {A1, B2}, Si

q3 = {A2, B1}, and Si
q4 = {A2, B2}. If

we learn that Si
q1 ≻ Si

q2 (i.e., {A1, B1} ≻ {A1, B2}), we can
derive Si

q3 ≻ Si
q4 (i.e., {A2, B1} ≻ {A2, B2}).

Based on the derivation rules, we derive more relations
based on Si

p ≻ Si
q as follows. We build a queue Q storing

the relations to be processed. Initially, we insert Si
p ≻ Si

q into
Q. Then, we continually pop out relations from Q until Q is
empty. For each popped out relation, we use rules (1)-(3) to de-
rive more relations and insert the derived ones (if any) into Q.

C. Analysis

The pseudocode of our algorithm SP-Tree is shown in Al-
gorithm 1. The theoretical analysis is presented in Theorem 2.

Theorem 2. Algorithm SP-Tree solves the special case of ISM
by asking a user O(s1 +

∏dcat

i=2 s2i) questions.

Corollary 1. SP-Tree is asymptotically optimal in terms of
the number of questions asked for the special case of ISM.

V. ISM CONSIDERING MIXED ATTRIBUTES

We consider the general case of ISM in which tuples are
described by categorical and numerical attributes, and propose
algorithm GE-Graph. Intuitively, we maintain three data struc-
tures: (a) A numerical range R ⊆ Rdnum , which maintains
the learned preference on numerical attributes. (b) A hyper-
graph G, which maintains the learned preference on categorical

5

Algorithm 1: The SP-Tree Algorithm

1 Input: A tuple set D
2 Output: The user’s favorite tuple in D
3 Build the C-Tree for all tuples in D
4 for i← dcat to 1 do
5 Build set Si = {Sq1 , Sq2 , ..., Sqmi

}
6 for j ← 2 to mi do
7 for k ← 1 to j − 1 do
8 if ∃p, q in the C-Tree s.t. pcat[l] = qcat[l]

∀l ∈ [1, i− 1], and Si
p = Si

qj Si
q = Si

qk

then
9 Show p, q to users. Update the C-Tree.

10 return The only tuple left in the C-Tree

attributes. Here, we use two distinct data structures to handle
numerical and categorical attributes, respectively, since the two
types of attributes possess different characteristics (continuous
vs. discrete). (c) A tuple set C comprising tuples in D which
are the candidates as the final answer. During the interaction,
we select tuples from C as questions (tuple selection). Accord-
ing to the user feedback, we update R and G accordingly and
prune from C the tuples that cannot be the user’s favorite tuple
based on the updated R and G (information maintenance).
When there is only one tuple left in C, we stop the interaction
and return the finally left tuple (stopping condition).

A. Preliminaries

Hyper-plane. In a dnum-dimensional geometric space Rdnum ,
given a dnum-length vector z in Rdnum , we can build a
hyper-plane hz: {r ∈ Rdnum | r · z = 0}, which passes
through the origin with its unit normal in the same direction as
z [23]. Hyper-plane hz divides Rdnum into two halves, called
half-spaces [23]. The half-space above hz (resp. below hz),
denoted by h+

z (resp. h−
z), contains all the points r ∈ Rdnum

such that r·z > 0 (resp. r·z < 0). In geometry, a polyhedron P
is an intersection of a set of hyper-planes and half-spaces [23].

Multiset. A multiset L is a collection of elements, in which
elements are allowed to repeat [24], [25]. The number of times
an element A repeats in a multiset L is called the multiplicity
of A and is denoted by mL(A). Note that the multiplicity can
be negative (mL(A) < 0) or zero (mL(A) = 0). The former
can be interpreted as the number of times an element is absent
in a multiset. The latter means that an element is not in the
multiset. We store categorical values as elements in multisets.
A multiset is represented as L = [A1, A2, ...]mL(A1),mL(A2),....
For example, [A1, A2]−1,2 denotes a multiset with 1 absences
of A1 and 2 repeats of A2. Let L1 and L2 be two multisets.
There are several operations on multisets L1 and L2:
• L = L1 ⊕ L2 is the multiset containing the elements in L1

or L2, where ∀A ∈ L, mL(A) = mL1
(A) + mL2

(A). For
example, if L1 = [A2, A3]−2,−1 and L2 = [A2, A3]2,2, then
L = [A3]1. For convenience, we denote L1 ⊕ L1 by 2L1.

• The inverse of a multiset L, denoted by L, contains exactly
the elements of L, where ∀A ∈ L, mL(A) = −mL(A). For
example, if L = [A1, A2]1,−2, then L = [A1, A2]−1,2. For
simplicity, we denote L1 ⊕ L2 by L1 ⊖ L2.

B. Information Maintenance

1) Numerical Utility Range R: Recall that
∑dnum

i=1 unum =
1. The user’s numerical utility vector unum can be seen as a
point in space Rdnum . We maintain a polyhedron R in Rdnum ,
called the numerical utility range, which contains unum.
Initially, R is the entire numerical utility space, i.e., R = {r ∈
Rdnum

+ |
∑dnum

i=1 r[i] = 1}. During the interaction, we interact
with a user and build hyper-planes to update R in two ways.

Firstly, consider two tuples p, q ∈ D presented as a question
to a user, where ∀i ∈ [1, dcat], pcat[i] = qcat[i]. We build a
hyper-plane hpnum−qnum based on vector pnum − qnum, and
update R following Lemma 3. In the following, if tuples p
and q are the same in all categorical attributes, we denote the
hyper-plane by hp−q for simplicity.

Lemma 3. If a user prefers p to q,R is updated to beR∩h+
p−q .

Example 10. In Figure 3, dnum = 2. R is initialized to be a
line segment. Suppose that pnum = (34 ,

1
4) and qnum = (14 ,

3
4).

If a user prefers p to q, we build a hyper-plane hp−q based
on pnum − qnum and R ← R∩ h+

p−q (right line segment).

Secondly, R can also be updated based on the relational
graph G. We postpone its description to the next section.

2) Relational Graph G: We maintain a hyper-graph G =
(V,E) [26], [27], called the relational graph, to store the
relations between categorical values based on the learned user
preference (e.g., the difference between g1(A1) and g1(A2),
where A1 and A2 are two categorical values). V is a set of
nodes. E is a set of hyper-edges each of which connects 3
nodes in V . In the following, we first define G in terms of
nodes and hyper-edges, and then show the way to update G.

Node. Given two tuples p, q ∈ D that have different values in
at least one categorical attribute, we build a node v containing
the following information. (1) A multiset L = L1 ⊖ L2 (or
L1 ⊕ L2). L1 (resp. L2) is a multiset that stores all the cate-
gorical values of p (resp. q) as elements with multiplicity 1. (2)
Pair ⟨p, q⟩. If multiple pairs correspond to the same multiset,
they are stored in the same node. (3) Several upper bounds and
lower bounds, which describe the user preference on the cat-
egorical values in the multiset. Consider two tuples p, q ∈ D.

Lemma 4. If a user prefers p to q (i.e., f(p) > f(q)), we obtain
an inequality

∑
ci∈L mL(ci)gi(ci) > unum · (qnum − pnum),

where ci denotes a value in the i-th categorical attribute.

For simplicity, with a slight abuse of notations, we denote∑
ci∈L mL(ci)gi(ci) in Lemma 4 by g(L). We call unum ·

(qnum − pnum) the lower bound of g(L). Similarly, if a user
prefers q to p, we can derive an upper bound unum · (qnum−
pnum) for g(L), i.e., g(L) < unum · (qnum − pnum).

Example 11. Consider tuples p1 and p2 in Table III that have
categorical values A1, B1 and A2, B1, respectively. We build
a node v1 in Figure 5 that stores multiset L = [A1, A2]1,−1

6

𝑟[2]

𝑟[1]

ℎ!"#ℎ!"#"

ℎ!"#$

𝑂

Figure 3: Space Rdnum

⟨𝑝!, 𝑝"⟩, ⟨𝑝#, 𝑝$⟩
𝑔# 𝐵! − 𝑔# 𝐵# < 𝑢%&' ⋅ (0.2, 0.1)

⟨𝑝!, 𝑝#⟩, ⟨𝑝", 𝑝$⟩
𝑔! 𝐴! − 𝑔! 𝐴# > 𝑢%&' ⋅ (0.2, 0.8)
𝑔! 𝐴! − 𝑔! 𝐴# > 𝑢%&' ⋅ (0.8, 0.2)

𝒗𝟐

𝒗𝟏

Figure 4: Bounds in Nodes

𝐵!, 𝐵" !,$!
⟨𝑝!, 𝑝%⟩, ⟨𝑝", 𝑝&⟩

𝐴!, 𝐵!, 𝐴", 𝐵" !,!,$!,$!
⟨𝑝!, 𝑝&⟩

𝐴!, 𝐴" !,$!
⟨𝑝!, 𝑝"⟩, ⟨𝑝%, 𝑝&⟩ 𝒗𝟑
𝒗𝟐

𝒗𝟏

𝐴", 𝐵!, 𝐴!, 𝐵" !,!,$!,$!
⟨𝑝", 𝑝%⟩𝒗𝟒

𝐴!, 𝐴" !,$!⊕ 𝐵!, 𝐵" !,$! = 𝐴!, 𝐵!, 𝐴", 𝐵" !,!,$!,$!

𝐵!, 𝐵" !,$!⊝ 𝐴!, 𝐴" !,$! = 𝐴", 𝐵!, 𝐴!, 𝐵" !,!,$!,$!

𝐴", 𝐵!, 𝐴!, 𝐵" !,!,$!,$!⊕2 𝐴!, 𝐴" !,$! = 𝐴!, 𝐵!, 𝐴", 𝐵" !,!,$!,$!

𝐴!, 𝐵!, 𝐴", 𝐵" !,!,$!,$!⊕ 𝐴", 𝐵!, 𝐴!, 𝐵" !,!,$!,$! = 2 𝐵!, 𝐵" !,$!

hyperedge

Figure 5: Relational Graph

and pair ⟨p1, p2⟩. Since pair ⟨p3, p4⟩ corresponds to the same
multiset L, it is also stored in node v1. If a user prefers p1
to p2, we obtain a lower bound unum · (p2 num − p1 num)
for g(L), i.e., g1(A1)− g1(A2) > unum · (p2 num− p1 num).
Similarly, we can build the other nodes shown in Figure 5.

There may be many upper or lower bounds in each node,
which affects the execution time and the storage space. To save
the cost, we do not store the untight bounds. In the following,
when p and q are clear, we denote a bound, e.g., unum·(pnum−
qnum), by unum · △x or unum · △y for simplicity.
Definition 1. unum · △x is an untight lower bound for g(L)
if ∀r ∈ R, there is a lower bound unum · △x′ for g(L) such
that r · (△x′ −△x) > 0. Similarly for upper bounds [13].

Intuitively, since unum ∈ R, if unum · △x is untight, there
must be a lower bound unum · △x′ such that unum · (△x′ −
△x) > 0, i.e., unum · △x′ bounds g(L) more tightly than
unum ·△x. If R is smaller, it is more likely that the condition
(i.e., ∀r ∈ R, there is a lower bound unum · △x′ for g(L)
such that r ·(△x′−△x) > 0) is satisfied. Thus, if R becomes
smaller, a lower bound might turn to be an untight bound.
Similar to upper bounds. We use linear programming to check
if a bound is untight. For the lack of space, see [13] in detail.
Hyper-edge. Each hyper-edge in E connects three nodes in
V , indicating the relation of the categorical values stored in
the nodes. Consider any three nodes v1, v2, v3 ∈ V with their
multisets L1, L2, and L3, respectively. If any two multisets can
deduce the third one based on one of the following derivation
rules, there exists a hyper-edge connecting v1, v2 and v3. Note
that not every three nodes are connected by a hyper-edge.
It is possible that two multisets cannot derive the third one.
Without loss of generality, suppose that L1 and L2 can deduce
L3. Let ⊙ ∈ {⊕,⊖}. We have the following derivation rules.

1) L1 ⊙ L2 = L3 or 2L3 or L3 or 2L3

2) 2L1 ⊙ L2 = L3 or L3

3) L1 ⊙ 2L2 = L3 or L3

Consider the derivation rule L1 ⊕ L2 = L3 as an example.
In Figure 5, there is a hyper-edge connecting nodes v1, v2
and v3, since their multisets fulfill the derivation rule, i.e.,
[A1, A2]1,−1 ⊕ [B1, B2]1,−1 = [A1, B1, A2, B2]1,1,−1,−1.
We use a small black circle in Figure 5 to represent the
hyper-edge connecting v1, v2 and v3. Other hyper-edges are
similarly computed and shown in small circles in Figure 5.
Update. Suppose that tuples p, q ∈ D are selected as a
question to be asked to a user. Following the user feedback,
relational graph G can be updated. We consider the update in
two cases: (1) p and q are the same in all categorical attributes
and (2) p and q differ in at least one categorical attribute.

Consider the first case. Based on the user feedback, we
can update R to be smaller, i.e., R∩ h+

p−q or R∩ h+
q−p (see

Section V-B1), which may make some upper or lower bounds
untight. We remove those untight bounds from each node.
Example 12. Figure 4 shows two lower bounds in v1, where
△x1 = (0.2, 0.8) and △x2 = (0.8, 0.2). Suppose that R is
updated to be a line segment from (0.5, 0.5) to (1, 0). For
any point r in the updated R, r · (△x2 − △x1) > 0. Thus,
bound unum · (0.2, 0.8) is untight and is removed from v1.

Consider the second case. Assume that node v contains tuple
pair ⟨p, q⟩ and multiset L. If a user prefers p to q, we can
obtain a lower bound unum ·(qnum−pnum) for g(L), denoted
by unum · △x for simplicity. We add unum · △x into v and
update v in two steps. (1) We utilize all upper bounds in v with
unum ·△x to update R. Suppose that there is an upper bound
unum ·△y for g(L) in v (i.e., g(L) < unum ·△y). Since unum ·
△x < g(L) < unum ·△y, we have unum · (△y−△x) > 0. In
this way, we can build a hyper-plane h△y−△x based on vector
△y −△x and update R to be R∩ h+

△y−△x. (2) We remove
all bounds in v that become untight based on the updated R.
Example 13. Figure 4 shows an upper bound in v2, where
△y = (0.2, 0.1). Suppose that we obtain a lower bound
unum · (0.1, 0.6) for g2(B1) − g2(B2), i.e., △x = (0.1, 0.6).
Since △y −△x = (0.1,−0.5), we can build a hyper-plane h
based on vector (0.1,−0.5) and update R to be R∩h+. Then,
we remove the untight bounds in v2 based on the updatedR.

After the update of node v, we can utilize bound unum ·
△x in v to generate new bounds for the neighbor nodes of v
connected by hyper-edges. Assume that nodes v1, v2 ∈ V with
multisets L1 and L2 are two neighbor nodes of v. Without loss
of generality, suppose that L1⊕L2 = L and nodes v1 and v2
have bounds g(L1) < unum · △y1 and g(L2) < unum · △y2,
respectively. Since g(L) > unum · △x, we could generate the
following new bounds for v1 and v2.
• v1: g(L1) = g(L)− g(L2) > unum · (△x−△y2)
• v2: g(L2) = g(L)− g(L1) > unum · (△x−△y1)

Note that we will not use the generated bounds if they are
untight. If L1, L2 and L are derived following other rules, we
can generate new bounds similarly. Please see [13] for details.

After obtaining the newly generated bounds for the neighbor
nodes vc of v, we can update vc in the same way as we update
v. The newly generated bounds may further trigger the update
of the neighbor nodes of vc. The update will be continually
triggered and multiple nodes in G will be updated.

Specifically, we process the nodes in batches to update G.
The nodes to be updated in the b-th batch (b ≥ 1) are stored in
queue Qb. Initially, node v (containing ⟨p, q⟩ that are presented

7

to a user) is inserted into queue Q1, and node v is updated
in the first batch. In the b-th batch, we pop out nodes in Qb

until Qb is empty. For each popped-out node vp, we update
it and generate new bounds for each of its neighbor node v′p.
We insert v′p into Qb+1 and node v′p is to be updated in the
(b+ 1)-th batch if the newly generated bounds are tight. The
update process continues until all the nodes in the α-th batch
are updated, where α ≥ 1 is a given parameter. If α is large,
the update of G may be costly. If it is small, we may fail
to collect sufficient information from the user feedback. The
setting of parameter α will be discussed in Section VI-A. Other
acceleration strategies (e.g., indexing) are discussed in [13].

3) Candidate Set C: The candidate set C ⊆ D contains
the user’s favorite tuple. Initially, C is set to be D. During the
interaction process, we determine and prune from C the tuples
that cannot be the user’s favorite tuple based on R and G.

Pruning Strategy 1. For any p ∈ C, let Cp be the set of
tuples in C \{p} that have the same categorical values with p.
Lemma 5. Given R, p can be pruned if R ⊆ ∪q∈Cph

+
q−p,

where hq−p is a hyper-plane based on vector qnum − pnum.
Intuitively, since unum ∈ R, if R ⊆ ∪q∈Cph

+
q−p, we can

find a point q ∈ Cp such that f(q) > f(p). To check if R ⊆
∪q∈Cp

h+
q−p, we utilize the LP similar to Definition 1 (see [13]).

Pruning Strategy 2. For any p ∈ C, consider the set C′p of
tuples in C that have different values in at least one categorical
attributes with p. For each q ∈ C′p, we find the node v ∈ V
that contains pair ⟨p, q⟩. Suppose that there are l upper bounds
unum · △yi in v, where i ∈ [1, l]. We divide R into l disjoint
smaller polyhedrons, namely R1, R2, ..., Rl, such that (1)
each Ri corresponds to exactly one upper bound unum · △yi
and (2) ∀r ∈ Ri, ∀j ∈ [1, l] and j ̸= i, we have r · (△yj −
△yi) > 0. For each Ri, we build a hyper-plane hi that passes
through the origin with its norm as pnum − qnum +△yi.
Lemma 6. Given polyhedrons Ri, where i ∈ [1, l], tuple p can
be pruned from C if ∀i ∈ [1, l], Ri ⊆ h−

i .
If there are mi vertices in Ri, to identify if Ri ⊆ h−

i , we
need O(mi) time to check if all vertices of Ri are in h−

i .
The total time is O(

∑l
i=1 mi). Similarly, we can find node v

containing pair ⟨q, p⟩ and check if p can be pruned because
of q based on the lower bounds in node v [13].
Example 14. In Figure 4, v2 contains pair ⟨p2, p4⟩ and an up-
per bound. Assume that R is a line segment from (0.8, 0.2) to
(1, 0). We build a hyper-plane h1 based on vector (−0.2, 0.8)
and set R1 = R. Since R1 ⊆ h−

1 , p2 can be pruned from C.

C. Tuple Selection
In each round, we select two tuples from C as a question.

The restriction of selecting tuples from C ensures that |C|
becomes strictly smaller after each question. This is because
we can know the user preference on the two selected tuples,
and thus, prune at least one tuple from C. Our tuple selection
strategy has two types.
• Same-Categorical Type. We randomly select two tuples
p, q ∈ C such that ∀i ∈ [1, dcat], pcat[i] = qcat[i].

Algorithm 2: The GE-Graph Algorithm

1 Input: A tuple set D, two update parameters α and ϵ
2 Output: The user’s favorite tuple in D
3 R ← {r ∈ Rdnum

+ |
∑dnum

i=1 r[i] = 1}.
4 Initialize G and C ← D.
5 while |C| > 1 do
6 vr ← the selected reference node.
7 if Gain(p2,q2,vr)

Gain(p1,q1,vr)
≤ ϵ then

8 Display ⟨p1, q1⟩ and obtain the user’s answer A.
9 Update R with h+

p1−q1 /h+
q1−p1

according to A.

10 else
11 Display ⟨p2, q2⟩ and obtain the user’s answer A.
12 v ← the node in G containing ⟨p2, q2⟩.
13 b← 1 and Qb ← {v}.
14 while b ≤ α do
15 while |Qb| ≠ ∅ do
16 Pop a node vp from Qb.
17 Update bounds in vp according to A.
18 Insert all neighbor nodes of vp in Qb+1.

19 b← b+ 1.

20 Update R based on the updated nodes in G.

21 for each tuple p ∈ C do
22 Check if p can be pruned from C based on Cp/C′p.

23 return The only tuple left in C.

• Different-Categorical Type. We randomly select two tuples
p, q ∈ C such that (1) they differ in at least one categorical
attributes and (2) they have the fewest different categorical
values among all pairs in C. The intuition of (2) is that if
there are many different values, it is more difficult to analyze
the user preference, since it is hard to learn the preference
difference is caused by which pairs of categorical values.
Our idea is to alternate flexibly the two types to ask a

user questions. Intuitively, in each interactive round, we find
p1, q1 ∈ C from the same-categorical type, and p2, q2 ∈ C
from the different-categorical type. Both pairs are selected ran-
domly. Then, we evaluate ⟨p1, q1⟩ and ⟨p2, q2⟩, and choose the
one as a question that can help to prune more tuples from C.

Consider a reference node vr ∈ V . We define the gain of
⟨p, q⟩ w.r.t. vr, denoted by Gain(p, q, vr), to be the number
of tuples stored in vr that can be pruned from C if we present
⟨p, q⟩ as a question to a user. If Gain(p2,q2,vr)

Gain(p1,q1,vr)
is large than a

given parameter ϵ, we use ⟨p2, q2⟩ as a question. Otherwise, we
turn to ⟨p1, q1⟩. In practice, we can use any node (e.g., the one
storing ⟨p2, q2⟩) as reference node vr. Note that the value of ϵ
should be set properly. If ϵ =∞, same-categorical type takes
priority. If ϵ ≤ 0, different-categorical type dominates the tuple
selection. We will explore the setting of ϵ in Section VI-A.

D. Analysis

The pseudocode of GE-Graph is presented in Algorithm 2
and Theorem 3 gives a worst-case guarantee for GE-Graph.

8

Theorem 3. Algorithm GE-Graph solves the general case of
ISM by asking a user O(n) questions.

In an extreme case where each tuple is described by a unique
categorical value, any algorithms need to ask Ω(n) questions,
since each categorical value has to be asked at least once. Oth-
erwise, its utility cannot be determined. However in practice,
GE-Graph performs much better as shown in Section VI. It
can prune many tuples from C in each round and thus, easily
achieve the stopping condition (i.e., only one tuple left in C).

VI. EXPERIMENT

Our experiments were conducted with C/C++ implementa-
tion on a machine with 3.10GHz CPU and 16GB RAM.
Datasets. We conducted experiments on synthetic and real
datasets that were commonly used in existing studies [2], [6].
For synthetic datasets, we considered both anti-correlated and
correlated distributions for numerical attributes [28]. Their
categorical attributes were generated according to a Zipfian
distribution [2], [29], where the Zipfian parameter is set to 1.
For real datasets, we used Car [6], Diamond [30], Earthquake
[31], and Pollution [32]. Dataset Car includes 69,052 used cars
with 3 categorical (fuel type, vehicle type, and gearbox) and 4
numerical attributes (price, date of manufacture, horsepower,
and used kilometers). Dataset Diamond has 119,308 records
with 2 categorical (shape and color) and 2 numerical attributes
(price and carat). Dataset Earthquake contains 62,665 records
with 2 categorical (magType and type) and 4 numerical
attributes (depth, mag, rms, and gap). Dataset Pollution has
608,700 records with 2 categorical attributes (state and year)
and 3 numerical attributes (CO, SO2, and NO2).

For all datasets, each numerical attribute was normalized
to (0, 1]. Following prior settings [6], [7], which preprocessed
datasets to include only skyline tuples, we also preprocessed
datasets in the same manner to fairly compare our algorithms
with existing ones in a similar environment as described in
the original studies. Specifically, tuple p ∈ D was retained
if ∄q ∈ D such that (1) p and q were the same in all
categorical attributes and (2) q was not worse than p in all
numerical attributes and was strictly better than p in at least
one numerical attribute. After preprocessing, there were 3639,
513, 741, and 5150 skyline tuples in datasets Car, Diamond,
Earthquake, and Pollution, respectively. The synthetic datasets
typically had 102 − 104 skyline tuples. The exact statistics of
synthetic datasets can be found in [13].
Algorithms. We compared SP-Tree and GE-Graph against
ActiveRanking [14], QuickSort [17], AR [19], Adaptive [8],
UH-Random [6], and UH-Simplex [6]. The first four com-
petitors were ML methods adopting popular ML techniques
to learn the rank or the user preference via user interaction.
The last two were proposed for the preference queries, that
utilized user interaction to identify desired tuples for users.

For the existing algorithms designed for numerical attributes
only, we applied the commonly used one-hot encoding tech-
nique [8], [33], to transform the values of all categorical
attributes into the numerical form. Specifically, for each cate-
gorical value from all categorical attributes, we created a new

numerical attribute. If a tuple was described by this categorical
value originally, we set its value of the newly built numerical
attribute to 1. Otherwise, we set it to 0.

Since the existing algorithms were not proposed to find the
user’s favorite tuple directly, we adapted them as follows. (1)
ActiveRanking [14] and QuickSort [17] learned the ranking of
tuples. We returned the top-ranked tuple when obtaining the
ranking. (2) AR [19] divided tuples into l sets, where l ≤ n and
tuples in the i-th set were more preferred by the user than those
in the j-th set for all i, j ∈ [1, l] and i < j. We set l = 2 and
set the sizes of two sets to be 1 and n−1, respectively. (3) UH-
Simplex and UH-Random [6] returned a tuple whose so called
regret ratio satisfied a given threshold. We set the threshold
to 0 so that the returned tuple must be the user’s favorite one.
(4) Adaptive [8] learned the user preference. According to
[8], the learned user preference was close to the theoretical
optimal if the error threshold σ in the algorithm was set to
10−5. Thus, we set σ = 10−5 and returned the top-ranked
tuple w.r.t. the learned user preference. Besides, we created a
version of Adaptive, called Adapt-Prune, which incorporated
the tuple pruning strategy from [6] for comparison.
Parameter Setting. We evaluated the algorithms by varying:
(1) The dataset size n. (2) The number of numerical (resp.
categorical) attributes dnum (resp. dcat). (3) The cardinality
of each categorical attribute cval (i.e., the number of possible
values in each categorical attribute). Following [2], [6], unless
stated explicitly, we used an anti-correlated dataset with n =
100,000, dcat = 2, dnum = 3, and cval = 4 by default.
Performance Measurement. We evaluated the performances
of algorithms by 3 measurements: (1) Execution time; (2) Can-
didate size. We reported the percentage of remaining tuples in
C after each question; (3) The number of questions asked.

Unless stated explicitly, each algorithm was conducted ten
times with different utility functions. We stopped an algorithm
if its total execution time was more than 104 seconds. Since
different utility functions may cause different convergence re-
sults, we randomly generated the utility functions and expected
to see the average convergence performance. In the following
experiments, we reported the average results.

A. Results on Synthetic Datasets
Performance Study. Recall that we introduce two parameters
α and ϵ for our algorithm GE-Graph, where α controls the
update of G and ϵ is used for tuple selection. We explored their
value settings, by varying α from 1 to 10 and ϵ from 0.5 to
2 on synthetic datasets; other parameters were set by default.
Figure 6 shows the total time and the number of questions
asked. When α increased, the total time increased since there
were more nodes to be updated in G. However, the number
of questions asked only decreased when α increased from 1
to 2. This meant that many updated nodes in G helped little
to prune tuples. Thus, we set α = 2 in the rest experiments.
Similarly, we set ϵ = 2 since algorithm GE-Graph asked the
fewest questions when ϵ = 2.
Progress Analysis. We showed how the algorithms progressed
during the interaction process. We reported the middle results,

9

ε = 0.5 ε = 0.75 ε = 1.0 ε = 1.5 ε = 2.0

0.5

1

2

4

8

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
T

im
e
 (

s
)

α

24
25
26
27
28
29
30
31
32

1 2 3 4 5 6 7 8 9 10

#
 o

f
Q

u
e
s
ti
o
n
s

α

(a) (b)
Figure 6: Update Strategy

ActiveRanking
Adaptive-Prune

GE-Graph

UH-Random
UH-Simplex

Adaptive

SP-Tree
QuickSort

AR

10
-5

10
-4

10
-3

10
-2

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 T

im
e
 (

s
)

of Questions

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) (b)
Figure 7: Synthetic (Categorical-only & Anti)

P05
P25

P50
P75

P95

0

5e-05

0.0001

0.00015

0.0002

 1 2 4 6 8 10

T
im

e
 P

e
r

R
o
u
n
d
 (

s
)

of Questions

Figure 8: SP-Tree
(Time per round statistic)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

UH-Simplex
Adaptive

QuickSort
AR

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 1 5 10 15 20 25 30 35 40

C
u
m

u
la

ti
v
e
 T

im
e
 (

s
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) (b)
Figure 9: Synthetic (Mixed & Anti)

P05
P25

P50
P75

P95

0.001

0.01

0.1

1

10

 1 5 10 15

T
im

e
 P

e
r

R
o
u
n
d
 (

s
)

of Questions

Figure 10: GE-Graph
(Time per round statistic)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

Adaptive
QuickSort

AR

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1 5 10 15 20 25 30 35 40

C
u
m

u
la

ti
v
e
 T

im
e
 (

s
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) (b)
Figure 11: Synthetic (Mixed & Correlated)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

Adaptive
QuickSort

AR

10
-1

10
0

10
1

10
2

10
3

10
4

 4 5 6 7

T
o
ta

l
T

im
e
 (

s
)

of Attributes

16

32

64

128

256

512

4 5 6 7

#
 o

f
Q

u
e
s
ti
o
n
s

of Attributes

(a) (b)
Figure 12: Vary dnum (Mixed & Anti)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

Adaptive
QuickSort

AR

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 5 6 7 8

T
o
ta

l
T

im
e
 (

s
)

of Attributes

16

32

64

128

256

512

5 6 7 8

#
 o

f
Q

u
e
s
ti
o
n
s

of Attributes

(a) (b)
Figure 13: Vary dcat (Mixed & Anti)

30%
40%

50%
60%

0

0.2

0.4

0.6

0.8

1

1.2

 1 5 10 15 20 25 30 35 40

C
u
m

u
la

ti
v
e
 T

im
e
 (

s
)

of Questions

Figure 14: Vary Sparsity
(Time)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

Adaptive
QuickSort

AR

10
0

10
1

10
2

10
3

10
4

 4 8 12 16 20 24 28

T
im

e
 (

s
e
c
o
n
d
s
)

Cardinality

16
32

64
128
256

512
1024
2048

4 8 12 16 20 24 28

#
 o

f
Q

u
e
s
ti
o
n
s

Cardinality

(a) (b)
Figure 15: Vary cval (Mixed & Anti)

ActiveRanking
Adaptive-Prune

GE-Graph
UH-Random

Adaptive
QuickSort

AR

0.25

1

4

16

64

256

1024

10k 50k 100k 500k 1M

T
o
ta

l
T

im
e
 (

s
)

n

16

32

64

128

256

512

10k 50k 100k 500k 1M

#
 o

f
Q

u
e
s
ti
o
n
s

n

(a) (b)
Figure 16: Vary n (Mixed & Anti)

30%
40%

50%
60%

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

Figure 17: Vary Sparsity
(Candidate size)

i.e., the candidate size and execution time (including total time,
cumulative time, and time per round). Note that the candidate
size was an indicator of termination (i.e., it implied the number
of questions asked). If the candidate size was reduced at
a faster pace, our algorithms would stop more quickly. We
evaluated our algorithms on several datasets.

The first dataset was a categorical-only dataset in Figure 7.
Our algorithms were the fastest and reduced the candidate size
the most effectively. In particular, SP-Tree designed for the
special case of ISM only took 10−4 seconds to ask 6 questions.
It was the only one that reduced the candidates by 50% after
2 questions. To show how SP-Tree interacted with users, we
ran it 100 times with different utility functions and plotted the
distribution of time per round (P05, P25, P50, P75, and P95) in
Figure 8. The time per round of SP-Tree decreased and it only
spent 10−5−10−4 seconds to interact with users in each round.

The second one was a mixed-attribute dataset in Figure 9.
Since SP-Tree only worked for the special case of ISM, it

was excluded. UH-Simplex failed to reduce the candidate size
effectively and ran the slowest. This was because its tuple
selection strategy was developed based on the convex hull
technique, which was costly for multiple attributes. It took
more than 1,000 seconds to ask 25 questions, while the second
slowest algorithm only took 142 seconds. Since UH-Simplex
was too slow, we excluded it in the rest experiments. UH-
Random, Adaptive and Adaptive-Prune were also slow. They
took dozens of seconds. UH-Random spent much time pruning
tuples after each question and Adaptive maintained a costly
data structure. Adaptive-Prune inherited both time-intensive
issues. Besides, Adaptive did not reduce the candidate size
since it only learned the user preference. Adaptive-Prune and
UH-Random reduced the candidate size ineffectively. Their
pruning strategy treated all attributes equally and neglected the
different characteristics of categorical and numerical attributes
as remarked in Section I. GE-Graph performed the best in

10

reducing the candidate size. It pruned more than 90% tuples
from C after 5 questions. ActiveRanking, QuickSort, and AR
ran faster than GE-Graph in the first few questions, since
they did not have a tuple pruning step, and thus, did not
need to process many tuples in the beginning. However,
without exploiting the relations between tuples, they asked
more questions. As the process continued, GE-Graph needed
less time for each round since fewer and fewer tuples were left
to process (see Figure 10). Note that Figure 9 only showed the
cumulative time up to 40 questions, where GE-Graph already
terminated (since its lines became flat) but the others did not.
The total time of GE-Graph was the smallest (see Figure 12).
The time distribution of GE-Graph was shown in Figure 10.
When the number of rounds increased, GE-Graph took less
time (0.003-0.6 seconds on average) for each round.

We also tested algorithms on other datasets with different
distributions, number of attributes, and cardinality. For exam-
ple, in Figure 11, we showed the performances of algorithms
on a mixed-attribute correlated dataset. The results verified that
our proposed techniques did not rely on attribute independence
and can be applied to various types of datasets. For the lack of
space, the results on some other datasets were shown in [13].

Scalability. We next studied the scalability of algorithms by
varying different parameters, e.g., dnum, dcat, cval, and n.
Varying dnum. In Figure 12, we varied the number of
numerical attributes dnum from 2 to 5. The results showed that
our algorithm GE-Graph preformed well when we scaled the
numerical attributes. It asked 12%−92% fewer questions and
ran 1-3 orders of magnitude faster than the existing algorithms.
Varying dcat. In Figure 13, we varied the number of cate-
gorical attributes dcat from 2 to 5. Most existing algorithms
could not complete when dcat > 3 due to the excessive time
(≥ 104 seconds). They handled a large amount of attributes
since the one-hot encoding mapped each categorical value to
an attribute. In contrast, GE-Graph utilized the relational graph
to handle categorical values. It scaled well w.r.t. dcat, e.g.,
when dcat = 3, it asked 22%− 82% fewer questions and ran
1− 4 orders of magnitude faster than the existing ones.
Varying cval. In Figure 15, we varied the cardinality cval of
categorical attributes from 4 to 28. GE-Graph asked the fewest
questions within the shortest time. When cval = 16, Adaptive
asked 6 times more questions and took 85 times longer time
than GE-Graph. Note that we only showed the other competi-
tors (e.g., AR) when cval = 4, since they took too much time
due to the excessive attribute issue as stated previously.
Varying n. In Figure 16, we varied the data size n from 10k
to 1M . Our algorithm GE-Graph scaled the best. Its execution
times was less than 2.2 seconds even if n = 1M , while the
fastest existing algorithm took 94 seconds. GE-Graph also
asked at least 8 fewer questions than the existing ones for all n.

Vary Sparsity. We evaluated GE-Graph on sparse data by
varying the sparse ratio, defined to be the portion of zero or
null values, from 30% to 60% in Figure 14 and 17. When
the data was sparser, tuples were less different (since they had
zero or null values in more attributes). Thus, the information

maintenance step (which dominates the time cost) in GE-
Graph became easier, e.g., relational graph G only built nodes
for tuples with different categorical values, resulting in a lower
time cost. Meanwhile, GE-Graph reduced the candidate size
effectively for different sparse ratios, leading to a small num-
ber of questions asked (about 20-24 questions were asked).

B. Results on Real Datasets

In Figure 18, we explored how algorithms progressed during
the interaction process on real datasets by reporting the candi-
date size. For dataset Car, we processed it into two versions.
The first version was exactly Car. The second version, namely
Car(Cat), only maintained the categorical attributes in dataset
Car. The results of some existing algorithms was incomplete
since they spent more than 104 seconds.

Our algorithms consistently reduced the candidate size the
most effectively on all datasets. For example, after asking
15 questions on Pollution, GE-Graph had fewer than 15%
tuples in C. The advantage of GE-Graph was more evident
on some datasets, e.g., Car and Earthquake (≥ 80% tuples
were pruned after the first question) since there were many
tuple pairs, say ⟨p, q⟩ and ⟨p′, q′⟩ in these datasets, such that
p differed from q in the same way as how p′ differed from
q′. When a user preferred p to q, we could prune q as well
as q′ from C (since the user would also prefer p′ to q′).
This led to a large portion of tuples to be pruned after each
question. On average, GE-Graph asked 18.2, 54.8, 54.8, 38.7,
and 166.6 questions on Car(Cat), Car, Diamond, Earthquake,
and Pollution, respectively, while the best competitor Adaptive
asked 107.1, 287.4, 272.8, 206.1, and 985.3 questions.

The cumulative time, as shown in [13], was consistent
to that in Section VI-A. As remarked there, ActiveRanking,
QuickSort, and AR were faster in the first few questions since
they did not need to process many tuples at the beginning.
However, they required asking more questions and running in
longer total times than ours. The details were shown in [13]).

C. Interaction Study

We next justified our interactive assumption (Section I) and
presented a user study for GE-Graph (SP-Tree is similar).
Confidence Study. We studied the case on a synthetic dataset
(cval = 10) that a user was unable to answer some questions.
Given a tuple pair ⟨p, q⟩, if the ratio of their utility difference

|f(p)−f(q)|
max{f(p),f(q)} was smaller than a threshold ρ, we assumed
that there was a 50% chance that a user could not answer this
question; in this case, another question would be asked. As
shown in Figure 19, the total time was almost unchanged and
the number of questions only slightly increased. This indicated
that unanswered questions affected little to our algorithm.
Error Study. We considered the case where users might make
mistakes. We assumed that there was a possibility, denoted by
P (Error), that a user gave wrong answers that were different
from their real preferences. By varying P (Error), we reported
the happiness of users, defined to be f(p)

f(p∗) [34], where p
(resp. p∗) is the tuple returned by GE-Graph (resp. the user’s
true favorite tuple). The closer the happiness to 1, the better

11

ActiveRanking Adaptive-Prune GE-Graph UH-Random Adaptive SP-Tree QuickSort AR

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

0%

20%

40%

60%

80%

100%

1 5 10 15 20 25 30 35 40

C
a
n
d
id

a
te

 S
iz

e
 (

%
)

of Questions

(a) Car(Cat) (b) Car (c) Diamond (d) Earthquake (e) Pollution
Figure 18: Real Datasets

0

2

4

6

8

10

0% 2% 4% 6% 8% 10%

T
o
ta

l
T

im
e
 (

s
)

ρ %

20
25
30
35
40
45
50
55
60

0% 2% 4% 6% 8% 10%

#
 o

f
Q

u
e
s
ti
o
n
s

ρ %

(a) (b)
Figure 19: Confidence Study

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25
H

a
p
p
in

e
s
s

P(Error)

Figure 20: Error Study

 2
 4
 8

 16
 32
 64

 128

UH-Simplex Adaptive GE-Graph Active-
Ranking

UH-Random
 0

 2

 4

 6

 8

#
 o

f
Q

u
e
s
ti
o
n

S
a
ti
s
fa

c
ti
o
n
/R

a
n
k

Questions
Sat on Cars

Sat on Algs
Rank on Cars

Rank on Algs

Figure 21: User Study

the result. As shown in Figure 20, although the happiness
decreased slightly, it was over 0.87 even if the possibility of
giving wrong answers was up to 0.25. This showed that our
algorithm was affected little by the user mistakes.
User Study. We conducted a user study on dataset Car to
demonstrate the robustness of our algorithm during real inter-
action. Following [6], [7], we randomly selected 1000 candi-
date cars from the dataset described by 5 attributes (price, year
of manufacture, horsepower, used kilometer, and fuel type).
We recruited 30 participants and reported their average result.

We compared GE-Graph against UH-Random, UH-Simplex,
Adaptive (the ML method that asked the fewest questions), and
ActiveRanking the fastest ML method). Each algorithm aimed
at finding the user’s favorite car. Since the user preference was
unknown for real users, we re-adapted Adaptive following [6],
[7] (instead of the way described previously). We compared
the user’s answer to some randomly selected questions with the
prediction w.r.t. an estimated preference ue. If 75% answers
were correctly predicted, Adaptive returned the top-ranked car
w.r.t. ue. Other algorithms followed our original adaptation.

Each algorithm was evaluated by five metrics: (1) an
objective metric, which was The number of questions, and two
subjective metrics (2) Satisfaction on cars and (3) Satisfaction
on algorithms, evaluating how satisfied a user was with the
returned cars and the algorithms, respectively. Both subjective
metrics asked users to give scores from 1 to 10. A higher score
indicated that the user felt more satisfied with the returned car
(resp. the algorithm). Since a user may give the same score
to different cars/algorithms, we asked each user to give (4) a
rank on the returned cars and (5) a rank on the algorithms.

Figure 21 showed that our algorithm performed the best
for all metrics. For example, it asked about 11%− 71% fewer
questions than the competitors. Its satisfactions (resp. ranks)
on both returned cars and algorithms were the best, which
were 7.4 and 6.5 (resp. 1.6 and 1.7), respectively. This verified
that our algorithm could work well in real-world scenarios.

D. Summary

The experiments showed the superiority of our algorithms
over the best-known existing ones. (1) Our algorithms were
effective and efficient. On the dataset with size 1M, the best-
known existing algorithm UH-Random asked 36.1 questions in
239 seconds, which is unacceptable in practice. In comparison,
GE-Graph asked 25.9 questions in 2.2 seconds. It reduced the
number of questions asked by more than 28% and accelerated
by two orders of magnitude. (2) GE-Graph scaled well in
terms of dcat, dnum, cval, and n (e.g., it asked 78% fewer
questions than Adaptive on the dataset with dnum = 5). (3)
GE-Graph was robust (e.g., in our user study, even if real
users may make mistakes during the interaction, it achieved
the best degree of satisfaction than existing ones). In summary,
SP-Tree asked the fewest questions in the shortest time for the
special case of ISM, and GE-Graph ran the fastest and asked
the fewest questions for the general case of ISM.

VII. CONCLUSION

In this paper, we present interactive algorithms for searching
the user’s favorite tuple in the dataset with numerical and
categorical attributes by asking as few questions as possible.
For the special case of ISM, we propose algorithm SP-Tree that
asks an asymptotically optimal number of questions. For the
general case of ISM, we propose algorithm GE-Graph, which
performs well theoretically and empirically. Extensive experi-
ments show that our algorithms are efficient and effective. As
for future work, we consider providing guarantees in the case
where users may make mistakes in answering questions.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their
constructive comments on this paper. The research of We-
icheng Wang and Raymond Chi-Wing Wong is supported by
PRP/026/21FX. The research of Min Xie is supported in part
by Guangdong Basic and Applied Basic Research Foundation
2022A1515010120 and China NSFC 62202313.

12

REFERENCES

[1] N. Sarkas, G. Das, N. Koudas, and A. K. H. Tung, “Categorical
skylines for streaming data,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 2008, p. 239–250.

[2] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang, “Online skyline
analysis with dynamic preferences on nominal attributes,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 21, no. 1, pp. 35–49,
2009.

[3] J. Dyer and R. Sarin, “Measurable multiattribute value functions,”
Operations Research, vol. 27, pp. 810–822, 08 1979.

[4] R. Keeney, H. Raiffa, and D. Rajala, “Decisions with multiple objectives:
Preferences and value trade-offs,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 9, pp. 403 – 403, 08 1979.

[5] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu, “Regret-
minimizing representative databases,” in Proceedings of the VLDB
Endowment, vol. 3, no. 1–2. VLDB Endowment, 2010, p. 1114–1124.

[6] M. Xie, R. C.-W. Wong, and A. Lall, “Strongly truthful interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2019,
p. 281–298.

[7] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search for one of the
top-k,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data. New York, NY, USA: ACM, 2021.

[8] L. Qian, J. Gao, and H. V. Jagadish, “Learning user preferences by
adaptive pairwise comparison,” in Proceedings of the VLDB Endowment,
vol. 8, no. 11. VLDB Endowment, 2015, p. 1322–1333.

[9] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino, “Interactive
regret minimization,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA: ACM, 2012,
p. 109–120.

[10] W.-T. Balke, U. Güntzer, and C. Lofi, “Eliciting matters – controlling
skyline sizes by incremental integration of user preferences,” in Ad-
vances in Databases: Concepts, Systems and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 551–562.

[11] Alchemer llc, 2022. [Online]. Available: https://www.alchemer.com/
resources/blog/how-many-survey-questions/

[12] Questionpro, 2022. [Online]. Available: https://www.questionpro.com/
blog/optimal-number-of-survey-questions/

[13] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search with mixed
attributes,” Tech. Rep., 2022. [Online]. Available: http://home.cse.ust.
hk/∼raywong/paper/mixed-interaction-technicalReport.pdf

[14] K. G. Jamieson and R. D. Nowak, “Active ranking using pairwise
comparisons,” in Proceedings of the 24th International Conference on
Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2011, p. 2240–2248.

[15] W. Wang and R. C.-W. Wong, “Interactive mining on ordered and un-
ordered attributes,” in Proceedings of the 27th International Conference
on Very Large Data Bases, San Francisco, CA, USA, 2022, p. 201–210.

[16] T.-Y. Liu, “Learning to rank for information retrieval,” in Proceedings
of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York, NY, USA: ACM,
2010, p. 904.

[17] L. Maystre and M. Grossglauser, “Just sort it! a simple and effective
approach to active preference learning,” in Proceedings of the 34th
International Conference on Machine Learning, 2017, p. 2344–2353.

[18] B. Eriksson, “Learning to top-k search using pairwise comparisons,” in
Proceedings of the 16th International Conference on Artificial Intelli-
gence and Statistics, vol. 31. Scottsdale, Arizona, USA: PMLR, 2013,
pp. 265–273.

[19] R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, “Active
ranking from pairwise comparisons and when parametric assumptions
do not help,” The Annals of Statistics, vol. 47, no. 6, pp. 3099–3126,
2019.

[20] A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. V. Jagadish, “Rrr: Rank-
regret representative,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. New York, NY, USA:
ACM, 2019, pp. 263–280.

[21] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall, “Efficient k-regret
query algorithm with restriction-free bound for any dimensionality,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2018, p. 959–974.

[22] Formplus, 2022. [Online]. Available: https://www.formpl.us/blog/
categorical-data

[23] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Com-
putational geometry: Algorithms and applications. Springer Berlin
Heidelberg, 2008.

[24] W. D. Blizard, “Negative membership.” Notre Dame Journal of formal
logic, vol. 31, no. 3, pp. 346–368, 1990.

[25] L. d. F. Costa, “An introduction to multisets,” arXiv preprint
arXiv:2110.12902, 2021.

[26] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Advances in Neural In-
formation Processing Systems, vol. 19, 2006, pp. 1601–1608.

[27] P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete,
“Analyzing dynamic hypergraphs with parallel aggregated ordered hy-
pergraph visualization,” IEEE Transactions on Visualization and Com-
puter Graphics, pp. 1–1, 2019.

[28] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in Proceedings of the International Conference on Data Engineering,
2001, p. 421–430.

[29] N. L. Johnson, S. Kotz, and A. W. Kemp, Univariate Discrete Distri-
butions. Wiley-Interscience, 1992.

[30] Dataset diamond, 2022. [Online]. Available: https://www.kaggle.com/
datasets/miguelcorraljr/brilliant-diamonds

[31] Dataset earthquake, 2022. [Online]. Avail-
able: https://www.kaggle.com/datasets/thedevastator/
uncovering-geophysical-insights-analyzing-usgs-e

[32] Dataset pollution, 2022. [Online]. Available: https://www.kaggle.com/
datasets/alpacanonymous/us-pollution-20002021

[33] B. L. Milenova, J. S. Yarmus, and M. M. Campos, “Svm in oracle
database 10g: removing the barriers to widespread adoption of support
vector machines,” in Proceedings of the 31st international conference
on Very large data bases, 2005, pp. 1152–1163.

[34] M. Xie, R. C.-W. Wong, P. Peng, and V. J. Tsotras, “Being happy with
the least: Achieving α-happiness with minimum number of tuples,” in
Proceedings of the International Conference on Data Engineering, 2020,
pp. 1009–1020.

13

